Que los alumnos tienen problemas con las sumas y restas de enteros es algo que conocemos todos los profesores de matemáticas. Todos usamos diferentes trucos para que ayudarles en los cálculos:

  • Hablamos de dinero: tengo tres, debo 4, …
  • Usamos un ascensor: restar es bajar y sumar es subir.
  • Usamos la recta numérica: sumar es moverse hacia la derecha y restar moverse hacia la izquierda.

Quiero compartir con vosotros una actividad con fichas para darle sentido a las operaciones.

Para la actividad uso la siguiente presentación en la que queda muy claro el procedimiento a seguir:

Repartimos fichas de dos colores: un color representa el valor positivo y el otro negativo.

Está claro que si tenemos una ficha de cada color, se anulan y podemos retirarlas:

Vamos presentando diferentes operaciones que ellos van calculando con las fichas: 5-4, 4-5, -5+4, -5-4, …

Ese tipo de operaciones son sencillas. El problema es explicar qué es -(-6). En esta imagen podéis ver el truco que usamos:

También os comparto una presentación por si lo queréis hacer con paréntesis:

Tras ver varias operaciones entre todos, cada pareja hace una base de datos de operaciones con las fichas.

Lo anterior, ayuda a visualizar pero estas operaciones hay que automatizarlas y para eso lo mejor es la repetición. Hacer muuuuchas operaciones.  

Os comparto las otras cosas que hago, aparte del cuaderno que es fundamental, para que no les sea tan árido:

  • Con barajas de cartas de póquer por parejas: cada uno saca una carta y calculan el resultado.
  • En el aula de informática, hacemos tests en Thatquiz como éste.
  • Con este libro de Geogebra realizamos actividades autocorregibles.
  • Y, por supuesto, jugamos al «Bingo de números enteros» que les encanta. Con el bingo es sorprendente la cantidad de operaciones que hacemos en clase sin darse cuenta.

 

 

En un anterior entrada de este blog, os compartí diferentes actividades de «Magia Matemática» para hacer con los alumnos la primera semana de clase o cuando creamos oportuno. Este año con el inicio del nuevo curso, me he liado la manta a la cabeza y he creado unas cartas para sorprender a los alumnos. Unas cartas similares en su funcionamiento a las cartas binarias que ya mostré en el post mencionado anteriormente pero con imágenes de cómic para que les sean más atractivas a los alumnos.

Cartas mágicas de personajes de cómic

El juego  consta de 32 personajes de cómic repartidos 5 cartas similares a la de la imagen. Los alumnos se piensan un personaje y nos han de decir en qué cartas está  dicho personaje. Nosotros se lo adivinaremos para su sorpresa :-).

Os dejo el archivo para que podáis imprimirlas y jugar con ellos.

Descarga: https://drive.google.com/open?id=1CWm3vW7GKTPpV0bhuddf_xhu_5XIBwNn

Os comparto también una presentación que he creado por si lo queréis hacer con el proyector:

 

Tablero mágico

Os comparto también unos tableros mágicos en los que los alumnos deben tapar un número a su elección y nosotros se lo adivinaremos. Por ejemplo, en este tablero de 8×8:

El truco está en movernos 4 posiciones en diagonal hacia arriba o abajo y sumar o restar 8.

Por ejemplo: si nos tapan el 22 de la cuarta fila. Nos movemos cuatro posiciones en diagonal hacia abajo y llegamos al número 30. Le restamos 8 y obtenemos el 22 buscado.

En el fichero, hay dos tableros de 8×8, uno de 10×10 y otro de 6×6. No os será muy difícil encontrar el truco que esconde cada tablero.

Si tenéis problemas, observar la siguiente imagen ;-):

Os deseo un buen inicio de curso.

La eterna pregunta que me hacen los alumnos y que crece, casualmente, de forma exponencial cuando vemos los logaritmos «¿Y esto para qué sirve?«. Es más, en varias conversaciones con personas que los han estudiado, muy pocos podían decirme para que servían y mucho menos su importancia histórica. Ante esta tesitura, siempre que comienzo con los logaritmos trato de hacerles ver su importancia histórica y en que actividades aparecen los logaritmos.

En el siglo XVI y XVII, los matemáticos y científicos invertían gran cantidad de su tiempo en la realización de cálculos complejos. En esos siglos se  elaboraron los calendarios con mayor precisión,  se produjo un auge en el estudio de la astronomía,  se crearon las cartas de Navegación (fundamentales en dichos siglos),  el diseño de fortalezas teniendo en cuenta las condiciones del terreno para protegerse de la artillería de los sitiadores con la ayuda de bastiones, ángulos, salientes, etc., y así podríamos seguir. Todas estas disciplinas requerían resolver problemas de Trigonometría y había que disponer de tablas trigonométricas precisas y la construcción de dichas tablas exigía de cálculos muy laboriosos. Y ahí entraron los logaritmos para abreviar los cálculos y permitir que las grandes mentes se pudieran dedicar a cosas más productivas.

La idea principal, es transformar los productos en sumas, las divisiones en restas y las potencias en simples multiplicaciones.

En 1614, John Napier publicó su obra “Mirifici Logarithmorum Canonis Descriptio, ejusque usus in utroque Trigonometría; ut etiam in omni logística mathematica, amplissimi, facillimi, et expeditissimi explicatio”, en la que da a conocer los logaritmos que él llamó «números artificiales». En el prefacio muestra que Napier sabía exactamente lo que él había aportado y para qué era bueno:

Puesto que nada es más aburrido, compañeros matemáticos, en la práctica de las artes matemáticas, que el gran retraso sufrido en el tedio de las multiplicaciones y divisiones largas y pesadas, el hallazgo de proporciones y en la extracción de raíces cuadradas y cúbicas, y … los muchos errores escurridizos que pueden surgir; yo he estado dándole vueltas a mi cabeza de cómo podría ser capaz de solventar las dificultades mencionadas para que sea un arte segura y rápida. Al final, después de pensar mucho, finalmente he encontrado un modo asombroso de acortar los procedimientos … es una tarea agradable exponer el método para el uso público de los matemáticos.

Considero importante que los alumnos valoren la importancia histórica que tuvieron los logaritmos y que, evidentemente, han perdido debido a las calculadoras. Pero no solo eso, como sucede muchas veces en matemáticas, aparecieron propiedades y utilidades que no estaban previstas en su concepción original. Un poquito de todo esto lo hablo con los alumnos.

En esta entrada quería compartir con vosotros una serie de documentos que he creado para trabajar estos temas por si os son de utilidad:

Os dejo un genial cómic creado por Pedro Martínez Ortiz (@maths4everthink) que podéis encontrar en su web:

 

No pongo nada sobre el interés compuesto ya que aparece hasta en la sopa ;-).

Espero que os gusten.

PD: Gracias Juan Francisco por compartir tu trabajo.