Os presento un nuevo bingo que he creado para trabajar las identidades notables de forma divertida.

URL: http://www.aomatos.com/juegos/bingo-identidades.php

El manejo es muy sencillo y está explicado en la propia web.

Podéis jugar con dos tipos de cartones que os podéis descargar en la  misma web. Si queréis hacer bingos más rápidos elegir el cartón 3×3 y en caso contrario el cartón 5×5.

Cartón 3×3

Cartón 5×5

La eterna pregunta que me hacen los alumnos y que crece, casualmente, de forma exponencial cuando vemos los logaritmos “¿Y esto para qué sirve?“. Es más, en varias conversaciones con personas que los han estudiado, muy pocos podían decirme para que servían y mucho menos su importancia histórica. Ante esta tesitura, siempre que comienzo con los logaritmos trato de hacerles ver su importancia histórica y en que actividades aparecen los logaritmos.

En el siglo XVI y XVII, los matemáticos y científicos invertían gran cantidad de su tiempo en la realización de cálculos complejos. En esos siglos se  elaboraron los calendarios con mayor precisión,  se produjo un auge en el estudio de la astronomía,  se crearon las cartas de Navegación (fundamentales en dichos siglos),  el diseño de fortalezas teniendo en cuenta las condiciones del terreno para protegerse de la artillería de los sitiadores con la ayuda de bastiones, ángulos, salientes, etc., y así podríamos seguir. Todas estas disciplinas requerían resolver problemas de Trigonometría y había que disponer de tablas trigonométricas precisas y la construcción de dichas tablas exigía de cálculos muy laboriosos. Y ahí entraron los logaritmos para abreviar los cálculos y permitir que las grandes mentes se pudieran dedicar a cosas más productivas.

La idea principal, es transformar los productos en sumas, las divisiones en restas y las potencias en simples multiplicaciones.

 

En 1614, John Napier publicó su obra “Mirifici Logarithmorum Canonis Descriptio, ejusque usus in utroque Trigonometría; ut etiam in omni logística mathematica, amplissimi, facillimi, et expeditissimi explicatio”, en la que da a conocer los logaritmos que él llamó «números artificiales». En el prefacio muestra que Napier sabía exactamente lo que él había aportado y para qué era bueno:

Puesto que nada es más aburrido, compañeros matemáticos, en la práctica de las artes matemáticas, que el gran retraso sufrido en el tedio de las multiplicaciones y divisiones largas y pesadas, el hallazgo de proporciones y en la extracción de raíces cuadradas y cúbicas, y … los muchos errores escurridizos que pueden surgir; yo he estado dándole vueltas a mi cabeza de cómo podría ser capaz de solventar las dificultades mencionadas para que sea un arte segura y rápida. Al final, después de pensar mucho, finalmente he encontrado un modo asombroso de acortar los procedimientos … es una tarea agradable exponer el método para el uso público de los matemáticos.

Considero importante que los alumnos valoren la importancia histórica que tuvieron los logaritmos y que, evidentemente, han perdido debido a las calculadoras. Pero no solo eso, como sucede muchas veces en matemáticas, aparecieron propiedades y utilidades que no estaban previstas en su concepción original. Un poquito de todo esto lo hablo con los alumnos.

En esta entrada quería compartir con vosotros una serie de documentos que he creado para trabajar estos temas por si os son de utilidad:

No pongo nada sobre el interés compuesto ya que aparece hasta en la sopa ;-).

Espero que os gusten. 

PD: Gracias Juan Francisco por compartir tu trabajo.

Os comparto el nuevo bingo que he creado para trabajar de forma divertida en el aula las razones trigonométricas de los ángulos fundamentales.

El funcionamiento es similar a los otros bingos que he creado así que no me entretengo en su explicación. La única diferencia es que hay que descargarse los cartones de bingo e imprimirlos. Todo lo necesario, junto con las explicaciones pertinenentes, lo tenéis en la web del bingo:

URL: http://www.aomatos.com/juegos/bingo-trigono.php

PD: Ante cualquier error que podáis encontrar, agradecería que me lo notificarais.

Acertijo 1

Calcula el área de la siguiente bandera formada por cuatro rectángulos idénticos de perímetro 122 cm:

banderas1

 

Acertijo 2

Calcula el área de la siguiente bandera de altura 21 cm formada por cuatro rectángulos idénticos:

banderas2

Acertijo 3

Calcula el área de la siguiente bandera de base 200 cm formada por  cuatro cuadrados, dos de ellos iguales:

banderas3

 

Fuente: Pasatiempos y juegos en clase de matemáticas de Ana García Azcárate

La compraventa de coches

car-42552__180

Juan se dedica a la compraventa de coches de segunda mano. En una operación compra dos coches y los vende, ambos, por  10.000 € cada uno. En uno de ellos ha ganado el 10% y en el otro ha perdido el 10%.

¿Cómo le ha ido la operación?

Justifica tu respuesta